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Abstract 
The use of Adaptive Training within military training simulators has been gaining traction in 
the world. With the rapid development of Artificial Intelligence among other technologies, we 
want to use our work to delve into the possibilities of applying Adaptive Training in the 
military. Just in the last couple of years, the first few attempts at using Adaptive Training in a 
pilot training context were made. To further develop this field, we are exploring the use of two 
models alongside each other, a Machine Learning model and an Adaptive Learning model, to 
further improve the efficacy of military training using simulators. In this study, we evaluated 
various models and selected the most suitable Machine Learning model (Advantage Actor-
Critic) and Adaptive Learning model (Intelligent Intervention System) that best fit our use case. 
An implementation approach to integrate the models into simulator architecture was also 
discussed. This study paves the way forward for the practical application of Adaptive Training 
in military training simulators in the future. 
 
1. Introduction 
The large success of Artificial Intelligence (AI) applications in the modern world, as seen in 
the rapid rise and large-scale dominance of OpenAI and ChatGPT, has brought many insights 
and questions about the full potential of Machine Learning (ML) architectures. One possible 
use case that has arisen from this success in AI is the use of Adaptive Learning (AL) in training.  
 
AL is defined as a personalised approach to teaching that leverages on technology to tailor the 
learning experience to the needs of each individual student. Through the use of models and 
algorithms, it dynamically adjusts the delivery of the curriculum based on learner’s 
comprehension and performance [1]. AL aims to increase the proficiency levels of learners 
with maximum efficiency by balancing cognitive workload and engagement. This balance 
between the two is known as the flow state. AL aims to achieve user flow state through 
personalisation. Content delivery is adjusted according to the user’s engagement with the 
curriculum material, and AL models adjust themselves to best fit a trainee’s perceived skill 
level, strengths and weaknesses. One such example is the language learning platform Duolingo, 
with over 500 million users worldwide. Duolingo’s algorithm assesses the user’s language 
proficiency level, determining strengths and weaknesses in their knowledge. Based on the 
defined strengths and weaknesses, it will generate similar questions targeting user’s 
weaknesses, while ensuring the constancy of their strengths. By focusing on bridging the gap 
between the user’s strengths and weaknesses, Duolingo personalises each learning experience 



based on the user's needs and preferences, which is difficult to achieve in a traditional 
classroom. 
 
AL can be categorised into two types, micro- and macro- AL, which are explained below: 
 

1. Macro-adaptive systems tailor course delivery according to the user’s profile. This 
tailoring could be based on preselected preferences made by the user on how they would 
like to learn. 

2. Micro-adaptive systems evaluate how the user interacts with the course content or 
material, adjusting content delivery and difficulty based on the user’s perceived 
strengths and weaknesses. 

 
Ultimately, micro-adaptive systems offer a higher level of adaptivity than macro-adaptive 
systems. This study will analyse the use of different models that fall under micro-adaptive 
systems. The use of a personalised learning experience has already been widely implemented 
in the academic and educational field, as we have seen from the success and effectiveness of 
Duolingo. AL thus holds great potential for success, with its use becoming more commonplace. 
 
One current area of interest in the latest developments on AL has been in the context of military 
training. The prevalence and significance of simulators for military training has been ever 
increasing with the technological advancements in search for realistic yet low-stakes scenarios 
to prepare soldiers for actual warfare. Currently, military training simulators have become 
critical tools in training soldiers in a controlled and low-risk environment. The use of 
simulation in training also allows users to overcome spatial limitations through simulated 
environments. 
 
Existing simulators perform well in terms of realism and performance, but would benefit from 
the implementation of adaptivity, which addresses individual learning needs of trainees. Their 
effectiveness is then limited as the current “one-size-fits-all” method fails to reinforce 
individual trainee weaknesses effectively, negatively impacting skill development and 
retention. For instance, weaker trainees within a cohort will find it more difficult to catch up 
as a standardised, static approach might be inadequate at targeting and addressing their 
weaknesses effectively. Similarly, stronger trainees with fewer weaknesses will also find it 
difficult to address their weaknesses and improve more effectively. With the implementation 
of adaptivity and the possibility of personalisation, course delivery can be adjusted for each 
trainee to ensure that no trainee falls too far behind from the rest of the cohort by emphasising 
on weaknesses, while at the same time ensuring no trainee feels held back by enhancing their 
strengths and finetuning their performances. 
 
Additionally, the static nature of current training simulators provides limited actionable 
insights for trainee improvement and might even result in trainees attempting to “game the 
system”, with desirable performance being a result of muscle memory rather than true 
proficiency. 
 



As such, the objective of this project is to discuss and evaluate several types of ML and AL 
models, to determine and suggest the best models for implementation in a military training 
simulator context.  
 
2. Previous Work 
Early applications of adaptive training have shown to increase overall proficiency of trainees 
using a naval simulator, compared to a control group using a conventional simulator [2]. The 
use of adaptive Computer-Generated Forces (CGF) for training combat pilots has also been 
explored. For instance, a study on Adaptive CGF for pilots training in air combat simulation 
demonstrated that an adaptive CGF, driven by a family of self-organising neural networks, 
could learn from real-time interactions with human pilots and extend existing doctrines [3]. 
This adaptive approach was shown to be more effective than a non-adaptive, doctrine-driven 
CGF in engaging trainee pilots in 1-v-1 dogfights, providing both quantitative results and 
qualitative assessments that highlighted the benefits of adaptivity in training simulation. 
 
3. Methodology 
We propose the use of two agents in conjunction, a ML agent and an AL agent. The ML agent 
acts as a form of “model student”, and will learn to use and control the simulator as a virtual 
trainee. When it reaches a desired level of proficiency, it will fly alongside the actual trainee 
during simulator training. Both the ML agent’s and the trainee’s input data will be sent to the 
AL agent, who measures the discrepancy between the two sets of data and through which 
identifies trainee strength and weaknesses. Finally, the AL agent selects the appropriate 
intervention and adjusts the simulator as necessary.  
 
We have selected this two-step training process for several reasons. Such an approach, while 
more complex, holds an advantage over using a single pedagogical model by producing more 
robust agents [4]. Leveraging on the adaptability and flexibility of the ML agent acting as the 
“model student” and providing its data to the AL agent, we can ensure that the AL agent will 
be able to adjust the environment to adapt to the needs of the trainee, while constantly receiving 
high quality data from the ML agent to better ascertain trainee performance. This enables 
dynamic, real-time interaction between the trainee and the AL agent. This not only provides a 
more personalised learning experience, but also allows the simulator to address the trainee’s 
weaknesses as soon as they are recognised by the AL agent.  The AL agent’s role in measuring 
the discrepancy between the ML agent’s actions and the trainee’s input also allows for precise 
identification of the trainee's strengths and weaknesses, enabling more targeted interventions.  
 
4. Evaluation of Machine Learning Models 
AL methods are often built upon a ML algorithm that gathers data about a user, and learns how 
to best fulfil their learning needs over time. Hence, the involvement of ML will be necessary. 
The ML models discussed in this study will be evaluated against the following criteria: 
 

1. Data size required for success: the data sample size required to be fed to the agent for 
it to reach an acceptable level of accuracy. 



2. Precision: given that the proposed use case is for a military training simulator emulating 
real, high-stakes scenarios, agents will be expected to be able to perform their tasks at 
the highest level of precision and safety. 

3. Scalability: the learning model needs to be scalable to support diverse training scenarios 
and a large number of users. 

 
A type of ML commonly used for AL is called Reinforcement Learning (RL). In RL, agents 
interact with the environment at random, and adjust behaviour based on set objectives through 
a reward and punishment system that is designed by the developers [5]. As the agent goes 
through a long trial and error process, the actions of the agent slowly become more and more 
optimal. Agents collect data based on its actions and its resulting states, then make updates to 
agent policy to adjust to the collected data. The policy is a function that takes into account the 
current state and decides the new action to take, based on what earned rewards from previous 
trial and error data. 
 
Instead of being fed a dataset, RL models interact with their environment and generate their 
own data in the process, altering their agent policy in accordance to the goal. Unlike other 
forms of ML, RL models do not require an initial dataset, but instead learn to work towards a 
goal using a system of rewards and punishments. RL models can be categorised into three 
distinct groups. 
 
4.1 Value-Based Reinforcement Learning 
Value-based RL models estimate the value of reward of certain actions in a given state, 
prioritising maximising the long-term reward. An example would be Q-learning, which is an 
off-policy, model-free RL algorithm that aims to learn the quality (Q-value) of actions in 
various states. Such models are effective when it comes to learning in a small action space. In 
a specific RL environment, action space is defined as the set of all effective actions of the agent 
[6]. The most prominent from this category would be the Q-learning model, which learns by 
learning the quality of actions, or their Q-value in various states, using the Bellman Equation. 
 
4.2 Policy-Based Reinforcement Learning 
Policy-based RL models aim to directly learn the optimal policy, or the most effective available 
strategy by mapping states to the probabilities of the agent selecting a particular action within 
an action space. Through the reward-punishment system, the agent alters the probabilities of 
taking actions in different states, increasing the probability of the agent picking “good” actions, 
and decreasing the probability of “bad” actions. One such model from this category is Proximal 
Policy Optimisation (PPO). PPO models aim to train AI using a method of “clipping”, which 
decreases the probability of undesirable behaviour and increases probability of desirable 
behaviours. They focus on stable updates to agent policy, leading to consistent improvements 
in behaviour. PPO has been researched and implemented by OpenAI, who have found it more 
effective for the ChatGPT use case compared to other models such as Trust Region Policy 
Optimisation (TRPO), among others [7]. 
 



4.3 Actor-Critic Approach 
The actor-critic approach to RL comprises two neural networks, namely “actor” and “critic”, 
which work in a feedback loop to determine the best action in each given state within an action 
space [8]. The actor first suggests a set of actions in a given state based on its current policy. 
The critic then estimates the value of the reward that will be received as a result of these actions, 
providing feedback to the actor agent. Upon the completion of an action, the actor and critic 
then adjust their policy and parameters accordingly. 
 
A popular algorithm in this category is the Advantage Actor-Critic (A2C) model. The model’s 
behaviour is influenced by policy gradient and value function approaches. It uses a stochastic 
policy that maps each state to a probability distribution over actions. Given the resulting state 
after the action, Advantage is calculated using the difference between the estimated reward by 
the critic and actual received reward. Adjustments are made to the actor network by updating 
policy, while adjustments are made to critic network to reduce the Advantage function by 
adjusting parameters, moving the estimated reward values closer to the actual values. The 
process of training repeats until the actor agent consistently chooses actions that maximise 
cumulative rewards. 
 

Table 1: Evaluation of Machine Learning Models 

Model Type Data Size (relative) Precision Scalability 

Q-Learning 
(Value-
Based) 

Small, but gets bigger 
as complexity of 
scenario increases. 

Low, especially in 
complex action spaces. 

Low: Simple and 
effective for small 
action spaces, however 
struggles to handle 
larger environments or 
scenarios. 

Proximal 
Policy 
Optimisation 
(Policy-
based) 

Very large High High: Easily scalable 
to handle both simple 
and more complex 
scenarios. 

Advantage 
Actor-Critic 
(Actor Critic 
Approach) 

Moderate Moderate High: Can suit both 
simple and more 
complex scenarios. 

 
Table 1 shows an overview of the pros and cons of each ML model. We have decided that the 
Advantage Actor-Critic (A2C) model is the optimal choice for application to a military 
training simulator. The A2C model has shown to be highly effective in tackling complex action 
states, as well as being data efficient. A2C excels in high dimensional and continuous action 



spaces, such as flight simulators, where control inputs such as throttle, pitch and yaw require 
continuous adjustments. 
 
Unlike Q-learning, which struggles with high-dimensional action spaces, A2C's actor-critic 
architecture effectively handles complex tasks by learning both the optimal policy (actor) and 
value function (critic) simultaneously. This results in better sample efficiency and faster 
convergence in environments with large state spaces and sparse rewards, typical in military 
training simulators. Furthermore, A2C’s ability to reduce variance and stabilise learning makes 
it a reliable choice for high-stakes training scenarios, where precision and safety are paramount. 
Unlike PPO, which can be computationally expensive, A2C balances between performance 
and efficiency, offering both high adaptability and lower resource demands—ideal for military 
training simulators that need to operate in dynamic, real-time settings. Hence, the A2C model 
takes the best of both Q-learning and PPO models, while effectively addressing their pitfalls. 
 
5. Evaluation of Adaptive Learning Models 
AL algorithms gauge the user’s proficiency in different aspects of the task at hand, identifying 
strengths and weaknesses that allow it to propose interventions to help the learner best improve 
their skills. In our use case, our agent will be fed the data from both the trainee and the ML 
agent “model student”. The AL agent is then required to carry out two tasks: 
 

1. Measure the differences between the datasets of the trainee and ML agent during 
training, determining trainee skill mastery. 

2. Make appropriate interventions based on the determined strengths and weaknesses of 
the trainee. 

 
Task 1: Measure Performance Difference 
Given the simulator data from both the trainee and the ML agent, there are two approaches to 
measure the differences in performance between the two. The first would be a Formula-Based 
Approach which directly determines the difference between each corresponding data point. An 
example of a formula is shown below. 
 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	(𝑃𝐷) = 01(𝑇3 − 𝑀3)6
7

389

 

 
Where: 
Ti is the trainee’s data for metric i 
Mi is the ML agent’s data for metric i 
n is the number of performance metrics 
 
The second approach would involve the use of an algorithm that leverages on computational 
methods to analyse data, identifying patterns or trends that indicate the trainee’s strengths and 
weaknesses. Such algorithms include the Bayesian Knowledge Tracing (BKT), which tracks a 



learner’s knowledge state over time and dynamically adjusts the curriculum to target 
weaknesses effectively. 
 
A formula-based approach is an intuitive and straightforward method to directly make 
comparisons between the AL agent and the trainee as it allows for real-time assessments with 
minimal resource requirements. However, an algorithmic approach provides greater 
opportunity to truly understand the trainee. By not only discerning differences in the raw data 
but also identifying patterns to determine the strengths and weaknesses of the trainee. A model 
such as BKT becomes incredibly strong in this aspect. BKT is a predictive model built to 
estimate the learner’s mastery of skills based on their performances. This allows it to keep track 
of and determine which skills the learner displays proficiency in, and those that require 
interventions by the model. The use of BKT as a diagnostic tool in conjunction with an 
intervention engine allows trainees to better understand which areas of their flying require 
intervention, and provides the simulator the ability to make such interventions. 
 
Task 2: Intervention 
To personalise the trainee’s learning experience, the use of an intervention engine is necessary. 
Three notable options are the Intelligent Intervention System, Behaviour Change Interventions, 
and Rule-Based Expert System. 
 
5.1 Intelligent Intervention System 
The Intelligent Intervention System (In2S) is feedback-based and designed based on learning 
analytics. It includes three types of intervention: instructional, supportive, and motivational [9]. 
The instructional intervention uses signal lights (red, yellow, and green) to guide learners 
through assessment tasks, giving immediate feedback on their performance. The signal light 
given depends on how well the learner did, for example, red for bad and green for good. 
Supportive interventions are presented via a dashboard, and motivational interventions 
incorporate gamification elements like leader boards and badges for user engagement. This 
system has been evaluated positively by learners, indicating its usefulness and potential for 
broader application. 
 
5.2 Behaviour Change Interventions 
Behaviour Change Interventions focus on understanding the target group, behaviours that need 
to change, and the context in which change will occur. For example, they provide objectives 
for the target group, and provide rewards for completing them. These interventions are 
developed systematically, considering mechanisms of behaviour change techniques. They are 
designed to be iterative, allowing for continuous testing and refinement. This approach ensures 
that interventions are tailored to the specific needs and contexts of the learners. However, in 
the context of a military training simulator that may involve large and complex scenarios, an 
objective-based intervention approach may not be the most suitable as it may not be sufficient 
to fully encapsulate the complexities of the battlefield. 
 



5.3 Rule-Based Expert System 
Rule-based expert systems are a type of AI that uses a set of “if-then” rules to solve problems 
or make decisions. These systems emulate the decision-making abilities of a human expert in 
a specific field. Such systems use a knowledge base containing the rules for the system’s 
decision making. For example: “If the trainee has a lower-than-expected fuel level, then 
consider the possibility of a more efficient flight path.” An expert module then applies the rules 
and assesses the trainee performance, before making a decision on the appropriate intervention 
based on the knowledge it has to best suit the learning needs of the trainee. 
 

Table 2: Evaluation of Adaptive Learning Models 

Model Type Pros Cons Scalability 

Intelligent 
Intervention 
System  

The real-time feedback 
provides timely 
guidance to uses in 
correcting behaviour or 
actions. 

Risk of providing too 
much assistance to 
users, thus creating an 
over-reliance on the 
AL system. 
 
Complex, costly and 
time consuming to 
implement. 

High: adaptable across 
domains, and scalable 
for multiple users in 
the same simulation. 

Behaviour 
Change 
Interventions 

Encourages motivation 
due to having many 
objectives. 

Too narrow-minded for 
a complex domain, as 
objectives may be too 
simplistic. 

Low: Not as effective 
with complex domains 
like military 
simulators. 

Rule-Based 
Expert 
System 

Binary, straightforward 
“rules” ensure 
efficiency in 
assessment and 
selection of 
interventions. 

Overly-simple for a 
military training 
context, may not 
provide a complete or 
fully accurate coverage 
of adaptivity. 

Low: Poor scalability 
limits system’s ability 
to work with changing 
or increasing number 
of variables to keep 
track of. 

 
Table 2 shows an overview of the pros and cons of each AL model. When comparing these 
three options, the Intelligent Intervention System (In2S) stands out as the most suitable for 
applying AL to military training simulators. This is because military training often involves 
complex, dynamic scenarios that require real-time adaptation and personalised feedback. Given 
that interventions are made based on understanding differences in the simulator data of the 
trainee and the ML agent, the data-driven approach of IIS proves to be the best option to 
determine trainee proficiency, out of the three methods discussed. 
 



Hence, for the AL agent, we propose the use of BKT in conjunction with In2S to (1) determine 
the skill level of the trainee, and (2) make the correct intervention to the simulator environment 
to best suit the trainee’s learning. 
 
6. Implementation 
The ML and AL models involved will have to be compatible with one another, meaning that 
the ML model outputs must be interpretable by the AL model. The feasibility of the models 
being implemented into the simulator architecture will also have to be considered. Simulators 
are often built upon open standards such as High Level Architecture (HLA), or Distributed 
Interactive Simulation (DIS). In our case, we will be referencing HLA for implementation. 
 
In HLA, the integration process requires the design of Federates (components in the HLA 
framework) for both the ML and AL agents. These Federates must adhere to the Federation 
Object Model (FOM), which specifies the shared data objects and interactions within the 
simulation [10]. The ML and AL agents both function as separate federates that exchange data 
and feedback. For communication between such federates and the simulator, a publish-
subscribe model will be used, where each federate “publishes” its own data for other federates, 
and “subscribes” to the data that it requires. By leveraging the robust features of HLA, we can 
create a cohesive, adaptive, and scalable training system that can be easily implemented into 
current simulators. 
 
7. Limitations and Future Work 
In this study, we have explored the different ways adaptivity can be implemented in military 
training simulators. However, there were several gaps that could potentially be addressed in 
future works and research. Firstly, all discussion in this study has been theoretical in nature, 
and its viability for actual application in the field remains untested. Future work could explore 
the application of such models in the military, which would address concerns over model 
accuracy, computational demands and time needed to train models. A thorough evaluation of 
the system’s performance taking on real world training scenarios would be crucial in gaining 
insights on aligning the possibilities of adaptivity to the operational needs of the military. 
 
Another significant limitation lies in the specificity of the proposed models to certain types of 
training scenarios. The models discussed may not be universally applicable to all forms of 
military training, which could limit their effectiveness. Future research could look into 
developing more versatile models that can adapt to various types of training scenarios, ensuring 
broader applicability and utility. Furthermore, the technicalities of integrating each model, with 
each other as well as with the system and user interface, was not explored in this study and thus 
remains theoretical. 
 
Additionally, the research has not addressed the potential security concerns associated with the 
implementation of AL systems in military training. The use of AI and data-driven models raises 
questions about data privacy, consent, and the potential for misuse. Future work should 
consider these security implications and develop frameworks to ensure that the use of AL 
systems is secure. 



 
8. Conclusion 
In conclusion, we have explored and evaluated the viability of applying AL to military training 
using simulators, and also proposed a possible method of application through the combination 
of a ML model and an AL model to deliver real-time insights and interventions to trainees. The 
integration of adaptive architecture in simulators signifies a significant step forward in the 
modernisation of military training and builds the foundation for further advancement of 
simulator-based training. 
 
This study highlights the potential of AL systems to enhance the effectiveness and efficiency 
of military training. By providing personalised feedback and interventions, these systems can 
help trainees achieve higher levels of proficiency and preparedness in an increasingly complex 
and dynamic operational environment. However, the journey towards fully integrated adaptive 
military training simulators is still in its nascent stages. There is much to learn and refine, hence 
continued research and development in this field will be essential particularly in terms of 
practical application, model versatility and security considerations.  
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